Analysis of genomic and characterization features of Luteolibacter soli sp. nov., isolated from soil

Author:

An Jing,Xuan Xiaoqi,Wang Yanan,Wu Linwei,Zhou Jizhong,Mu Dashuai

Abstract

The strain designated as Y139T is a novel Gram-stain-negative, aerobic, and non-motile bacterium, was isolated from a soil sample in McClain County, Oklahoma, United States. The cells of strain Y139T were a rod-shaped, with the width of 0.4–0.7 μm and the length of 1.5–2.0 μm. Growth occurred at 20–37°C (optimum, 30°C), pH 5.5–9.5 (optimum, pH 7.0), and 0–1.0% NaCl (w/v) (optimum, 0%). The polar lipid profiles included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidyldimethylethanolamine, and an unidentified lipid. The major fatty acids included C16:0, iso-C14:0, and C16:1ω9c. Menaquinone-9 (MK-9) was recognized as the only respiratory quinone. Strain Y139T showed the highest 16S rRNA gene sequence similarity to Luteolibacter flavescens MCCC 1K03193T (98.3%). Phylogenetic analysis positioned it within the genus Luteolibacter. The draft genome of strain Y139T consisted of 7,106,054 bp, and contained 5,715 open reading frames (ORFs), including 5,656 coding sequences (CDSs) and 59 RNA genes. The genomic DNA G + C content was found to be 62.5%. Comparing strain Y139T with L. flavescens MCCC 1K03193T and Luteolibacter arcticus CCTCC AB 2014275T, the average nucleotide identity (ANI) values were 80.6 and 82.1%, respectively. Following phylogenetic, physiological, biochemical, and chemotaxonomic analyses, a novel species within the genus Luteolibacter, designated as Luteolibacter soli sp. nov., was proposed for strain Y139T, which was also assigned as the type strain (=KCTC 92644T = MCCC 1H01451T). Further analysis of core genes across 9 Luteolibacter species uncovered significant genomic divergence, particularly in those related to cofactor, vitamin, and energy metabolism. Analysis of biogeographic distribution suggested that lake and soil were the main habitats for the genus Luteolibacter. Additionally, the genus Luteolibacter was sensitive to climate warming and precipitation.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3