Response and recovery mechanisms of river microorganisms to gradient concentrations of estrogen

Author:

Qin Dan,Li Yan,Chen Nengwang,Hu Anyi,Yu Chang-Ping

Abstract

As an important ecological system on the earth, rivers have been influenced by the rapid development of urbanization, industrialization, and anthropogenic activities. Increasingly more emerging contaminants, such as estrogens, are discharged into the river environment. In this study, we conducted river water microcosmic experiments using in situ water to investigate the response mechanisms of microbial community when exposed to different concentrations of target estrogen (estrone, E1). Results showed that both exposure time and concentrations shaped the diversity of microbial community when exposed to E1. Deterministic process played a vital role in influencing microbial community over the entire sampling period. The influence of E1 on microbial community could last for a longer time even after the E1 has been degraded. The microbial community structure could not be restored to the undisturbed state by E1, even if disturbed by low concentrations of E1(1 μg/L and 10 μg/L) for a short time. Our study suggests that estrogens could cause long-term disturbance to the microbial community of river water ecosystem and provides a theoretical basis for assessing the environmental risk of estrogens in rivers.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3