Exploring the targetome of IsrR, an iron-regulated sRNA controlling the synthesis of iron-containing proteins in Staphylococcus aureus

Author:

Ganske Alexander,Busch Larissa Milena,Hentschker Christian,Reder Alexander,Michalik Stephan,Surmann Kristin,Völker Uwe,Mäder Ulrike

Abstract

Staphylococcus aureus is a common colonizer of the skin and nares of healthy individuals, but also a major cause of severe human infections. During interaction with the host, pathogenic bacteria must adapt to a variety of adverse conditions including nutrient deprivation. In particular, they encounter severe iron limitation in the mammalian host through iron sequestration by haptoglobin and iron-binding proteins, a phenomenon called “nutritional immunity.” In most bacteria, including S. aureus, the ferric uptake regulator (Fur) is the key regulator of iron homeostasis, which primarily acts as a transcriptional repressor of genes encoding iron acquisition systems. Moreover, Fur can control the expression of trans-acting small regulatory RNAs that play an important role in the cellular iron-sparing response involving major changes in cellular metabolism under iron-limiting conditions. In S. aureus, the sRNA IsrR is controlled by Fur, and most of its predicted targets are iron-containing proteins and other proteins related to iron metabolism and iron-dependent pathways. To characterize the IsrR targetome on a genome-wide scale, we combined proteomics-based identification of potential IsrR targets using S. aureus strains either lacking or constitutively expressing IsrR with an in silico target prediction approach, thereby suggesting 21 IsrR targets, of which 19 were negatively affected by IsrR based on the observed protein patterns. These included several Fe-S cluster- and heme-containing proteins, such as TCA cycle enzymes and catalase encoded by katA. IsrR affects multiple metabolic pathways connected to the TCA cycle as well as the oxidative stress response of S. aureus and links the iron limitation response to metabolic remodeling. In contrast to the majority of target mRNAs, the IsrR-katA mRNA interaction is predicted upstream of the ribosome binding site, and further experiments including mRNA half-life measurements demonstrated that IsrR, in addition to inhibiting translation initiation, can downregulate target protein levels by affecting mRNA stability.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3