The Interplay Between Respiratory Microbiota and Innate Immunity in Flavor E-Cigarette Vaping Induced Lung Dysfunction

Author:

Quinones Tavarez Zahira,Li Dongmei,Croft Daniel P.,Gill Steven R.,Ossip Deborah J.,Rahman Irfan

Abstract

Global usage of electronic nicotine delivery systems (ENDS) has been increasing in the last decade. ENDS are non-combustible tobacco products that heat and aerosolize a liquid containing humectants, with added flavorings and often nicotine. Though ENDS are promoted as a less harmful alternative to smoking, current evidence links their use to a wide range of deleterious health effects including acute and chronic lung damage. ENDS can elicit an inflammatory response and impair the innate immune response in the lungs. Exposure to ENDS flavorings results in abnormal activation of the lung epithelial cells and β-defensins, dysfunction of the macrophage phagocytic activity, increased levels of mucin (MUC5AC) and abnormal activation of the neutrophilic response (NETosis). ENDS menthol flavorings disrupt innate immunity and might be associated with allergies and asthma through activation of transient receptor potential ankyrin 1 (TRAP1). Recent studies have expanded our understanding of the relationship between the homeostasis of lung innate immunity and the immunomodulatory effect of the host-microbiota interaction. Alterations of the normal respiratory microbiota have been associated with chronic obstructive pulmonary disease (COPD), asthma, atopy and cystic fibrosis complications which are strongly associated with smoking and potentially with ENDS use. Little is known about the short-and long-term effects of ENDS on the respiratory microbiota, their impact on the innate immune response and their link to pulmonary health and disease. Here we review the interaction between the innate immune system and the respiratory microbiota in the pathogenesis of ENDS-induced pulmonary dysfunction and identify future areas of research.

Funder

National Center for Advancing Translational Sciences

National Cancer Research Institute

U.S. Food and Drug Administration

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference121 articles.

1. Regulated mucin secretion from airway epithelial cells.;Adler;Front. Endocrinol.,2013

2. Pulmonary immune cells in health and disease: lymphocytes.;Agostini;Eur. Respir. J.,1993

3. Flavoring chemicals in e-cigarettes: diacetyl, 2,3-pentanedione, and acetoin in a sample of 51 products, including fruit-, candy-, and cocktail-flavored e-cigarettes.;Allen;Environ. Health Perspect.,2016

4. Pulmonary immunity to viruses.;Allie;Clin. Sci. (Lond.),2017

5. Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection.;Bakshani;NPJ Biofilms Microbiomes,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3