Salinity Is a Key Determinant for the Microeukaryotic Community in Lake Ecosystems of the Inner Mongolia Plateau, China

Author:

Liu Changqing,Wu Fan,Jiang Xingyu,Hu Yang,Shao Keqiang,Tang Xiangming,Qin Boqiang,Gao Guang

Abstract

The arid and semiarid areas experienced remarkable lake shrinkage during recent decades due to intensive human activities and climate change, which would result in unprecedented changes of microeukaryotic communities. However, little is known about how climate change affects the structure and ecological mechanisms of microeukaryotic communities in this area. Here, we used an 18S rRNA gene-based high-throughput sequencing approach to explore the structure, interspecies interaction, and assembly processes of the microeukaryotic community in lake ecosystems of the Inner Mongolia Plateau. As a direct result of climate change, salinity has become the key determinant of the lacustrine microeukaryotic community in this region. The microeukaryotic community in this ecosystem can be divided into three groups: salt (Lake Daihai), brackish (Lake Dalinuoer) and freshwater lakes. Co-occurrence network analysis revealed that salinity shapes the interspecies interactions of the microeukaryotic community. This causes interspecies interactions to change from antagonistic to cooperative with an increase in salinity. Phylogenetic-based β-nearest taxon distance analyses revealed that stochastic processes mainly dominated the microeukaryotic community assembly in lake ecosystems of the Inner Mongolia Plateau, and salinity stress drove the assembly processes of the microeukaryotic community from stochastic to deterministic. Overall, these findings expand the current understanding of interspecies interactions and assembly processes of microeukaryotic communities during climate change in lake ecosystems of the Inner Mongolia Plateau.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3