Amplicon-Based Next-Generation Sequencing as a Diagnostic Tool for the Detection of Phylotypes of Cutibacterium acnes in Orthopedic Implant-Associated Infections

Author:

Ponraj Diana Salomi,Lange Jeppe,Falstie-Jensen Thomas,Jørgensen Nis Pedersen,Ravn Christen,Poehlein Anja,Brüggemann Holger

Abstract

The diagnosis of orthopedic implant-associated infections (OIAIs) caused by the slow-growing anaerobic bacterium Cutibacterium acnes is challenging. The mild clinical presentations of this low-virulent bacterium along with its ubiquitous presence on human skin and human-dominated environments often make it difficult to differentiate true infection from contamination. Previous studies have applied C. acnes phylotyping as a potential avenue to distinguish contamination from infection; several studies reported a prevalence of phylotypes IB [corresponding to type H in the single-locus sequence typing (SLST) scheme] and II (SLST type K) in OIAIs, while a few others found phylotype IA1 (more specifically SLST type A) to be abundant. However, phylotype determination has mainly been done in a culture-dependent manner on randomly selected C. acnes isolates. Here, we used a culture-independent amplicon-based next-generation sequencing (aNGS) approach to determine the presence and relative abundances of C. acnes phylotypes in clinical OIAI specimens. As amplicon, the SLST target was used, a genomic fragment that is present in all C. acnes strains known to date. The aNGS approach was applied to 30 sonication fluid (SF) samples obtained from implants removed during revision surgeries, including 17 C. acnes culture-positive and 13 culture-negative SF specimens. In 53% of the culture-positive samples, SLST types were identified: relative abundances were highest for K-type C. acnes, followed by H- and D-type C. acnes. Other types, including A- and C-type C. acnes that are more prevalent on human skin, had low relative abundances. The aNGS results were compared with, and confirmed by a culture-dependent approach, which included the isolation, whole genome sequencing (WGS) and phylotyping of 36 strains of C. acnes obtained from these SF samples. Besides serving as a powerful adjunct to identify C. acnes phylotypes, the aNGS approach could also distinguish mono- from heterotypic infections, i.e., infections caused by more than one phylotype of C. acnes: in eight out of nine culture-positive SF samples multiple C. acnes types were detected. We propose that the aNGS approach, along with the patient’s clinical information, tissue and SF cultures and WGS, could help differentiate C. acnes contamination from true infection.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3