Effects of Forest Gaps on the Structure and Diversity of Soil Bacterial Communities in Weeping Cypress Forest Plantations

Author:

Lyu Qian,Luo Yan,Dong Yuliang,Xiang Yongqi,Zhao Kuangji,Chen Gang,Chen Yuqin,Fan Chuan,Li Xianwei

Abstract

The decline in forest ecological function caused by pure forest plantations planted in the Yangtze River basin is becoming increasingly serious. To investigate this problem, we selected the local low-efficiency weeping cypress plantations for forest gap transformation. Three forest gap sizes, specifically large, medium, and small gaps, were established, and the effects of gap sizes on soil bacterial community structure and diversity in winter and summer were studied compared to no gaps (CK; control). Compared to CK, forest gaps had a significant effect on soil organic carbon (SOC) and soil total nitrogen (TN), and the highest values of SOC and soil TN under two seasons occurred in large forest gaps. The interactions of forest gap sizes and seasons had significant effects on pH, SOC, TN, and alpha diversity indices, including Simpson, Chao1, and ACE indices. Compared to winter, forest gaps significantly increased the soil bacterial community diversity indices in summer. Forest gap sizes significantly affected the composition of the bacterial community, but the composition of the dominant bacteria at the phyla and genera levels was similar. Linear discriminant effect size (LEfSe) analysis showed that there were 32 indicator bacterial species in two seasons. Co-occurrence network analysis revealed that the relationship of the soil bacterial community at the phyla level was complex, and there was a significant positive correlation among bacterial species. Soil bulk density (BD) and soil moisture (SM) significantly affected the soil bacterial alpha diversity indices. The composition of the dominant bacteria at the phyla level was significantly affected by soil microbial carbon (MBC), whereas the composition of dominant bacteria at the genera level was affected by soil hydrolysable nitrogen (AN) and the carbon/nitrogen (C/N) ratio. In this study, compared to the other forest gaps, large forest gaps were more conducive to the accumulation of soil nutrients, thus improving the structure of the soil bacterial community. Importantly, changes in the soil bacterial community structure due to gap formation may have profound effects on soil biogeochemical processes in weeping cypress forest plantations.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3