Geographic patterns and determinants of antibiotic resistomes in coastal sediments across complex ecological gradients

Author:

Xiong Shangling,Wang Kai,Yan Huizhen,Hou Dandi,Wang Yanting,Li Meng,Zhang Demin

Abstract

Coastal areas are highly influenced by terrestrial runoffs and anthropogenic disturbances, commonly leading to ecological gradients from bay, nearshore, to offshore areas. Although the occurrence and distribution of sediment antibiotic resistome are explored in various coastal environments, little information is available regarding geographic patterns and determinants of coastal sediment antibiotic resistomes across ecological gradients at the regional scale. Here, using high-throughput quantitative PCR, we investigated the geographic patterns of 285 antibiotic resistance genes (ARGs) in coastal sediments across a  ~  200  km scale in the East China Sea. Sediment bacterial communities and physicochemical properties were characterized to identify the determinants of sediments antibiotic resistome. Higher richness and abundance of ARGs were detected in the bay samples compared with those in nearshore and offshore samples, and significant negative correlations between the richness and/or abundance of ARGs and the distance to coastline (DTC) were identified, whereas different types of ARGs showed inconsistency in their relationships with DTC. The composition of antibiotic resistome showed significant correlations with nutrition-related variables (including NH4+-N, NO3-N, and total phosphorus) and metals/metalloid (including As, Cu, Ni, and Zn), suggesting that terrestrial disturbances largely shape the antibiotic resistome. The Bipartite network showed strong associations between ARGs and mobile genetic elements (MGEs), and Partial Least Squares Path Modeling further revealed that terrestrial disturbance strength (as indicated by DTC) directly affected abiotic environmental conditions and bacterial community composition, and indirectly affected antibiotic resistome via MGEs. These findings provide insights into regional variability of sediment antibiotic resistome and its shaping path across complex ecological gradients, highlighting terrestrial disturbances as determinative forces in shaping coastal sediment antibiotic resistomes.

Funder

Research and Development

National Natural Science Foundation of China

Natural Science Foundation of Ningbo

Ningbo University

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference90 articles.

1. Integron diversity in marine environments;Abella;Environ. Sci. Pollut. Res.,2015

2. Antibiotic resistance and its cost: is it possible to reverse resistance?;Andersson;Nat. Rev. Microbiol.,2010

3. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton;Apprill;Aquat. Microb. Ecol.,2015

4. “Gephi: an open source software for exploring and manipulating networks,”;Bastian;in,2009

5. Tackling antibiotic resistance: the environmental framework;Berendonk;Nat. Rev. Microbiol.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3