Microbial Community Succession and Metabolite Changes During Fermentation of BS Sufu, the Fermented Black Soybean Curd by Rhizopus microsporus, Rhizopus oryzae, and Actinomucor elegans

Author:

Yao Di,Xu Lei,Wu Mengna,Wang Xiaoyu,Wang Kun,Li Zhijiang,Zhang Dongjie

Abstract

BS Sufu is a fermented food that is made by mixed black soybeans and soybeans. Microbial communities and metabolites play an important role for the final product. We characterized microbial diversity of BS Sufu during fermentation by high-throughput DNA sequencing. Meanwhile, volatile compounds were investigated by solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC-MS). The results showed that bacterial diversity was higher than that of fungi in BS Sufu. We found the existence of bacterial and fungal core communities, including Enterococcus, Enterobacter, Rhizopus, and Monascus. Network analysis indicated that bacterial and fungal communities maintain positive and negative interactions, which are important to shape the resident microbial communities in Sufu. In addition, 17 free amino acids (FAAs) were detected at the post-fermentation stage, and umami amino acid mainly contributed to taste of BS Sufu. Furtherly, a total of 79 volatile constituents in BS Sufu, including nine alcohols, 31 esters, and four aldehydes, form synergistically the unique odor of Sufu. Additionally, the correlations between microbiota and metabolites were analyzed. Our results suggested that these microbial taxa and metabolites contribute to the taste and flavor of BS Sufu. This study provided information for analysis of BS Sufu at different fermentation periods in terms of the microbial diversity and metabolites, and this information was important to understand the properties of mixed soybeans Sufu.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3