Transcriptional response of the xerotolerant Arthrobacter sp. Helios strain to PEG-induced drought stress

Author:

Hernández-Fernández Gabriel,Galán Beatriz,Carmona Manuel,Castro Laura,García José Luis

Abstract

A new bacterial strain has been isolated from the microbiome of solar panels and classified as Arthrobacter sp. Helios according to its 16S rDNA, positioning it in the “Arthrobacter citreus group.” The isolated strain is highly tolerant to desiccation, UV radiation and to the presence of metals and metalloids, while it is motile and capable of growing in a variety of carbon sources. These characteristics, together with observation that Arthrobacter sp. Helios seems to be permanently prepared to handle the desiccation stress, make it very versatile and give it a great potential to use it as a biotechnological chassis. The new strain genome has been sequenced and its analysis revealed that it is extremely well poised to respond to environmental stresses. We have analyzed the transcriptional response of this strain to PEG6000-mediated arid stress to investigate the desiccation resistance mechanism. Most of the induced genes participate in cellular homeostasis such as ion and osmolyte transport and iron scavenging. Moreover, the greatest induction has been found in a gene cluster responsible for biogenic amine catabolism, suggesting their involvement in the desiccation resistance mechanism in this bacterium.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference98 articles.

1. Evaluation of selenium nanoparticles as a potential chemopreventive agent against lung carcinoma;Ali;Int. J. Pharm. Biol. Chem. Sci.,2013

2. HTSeq–a python framework to work with high-throughput sequencing data;Anders;Bioinformatics,2015

3. Insights on the evolution of trehalose biosynthesis;Avonce;BMC Evol. Biol.,2006

4. Polyamines in the virulence of bacterial pathogens of respiratory tract;Banerji;Mol Oral Microbiol,2021

5. Trimmomatic: a flexible trimmer for Illumina sequence data;Bolger;Bioinformatics,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3