White-rot fungi scavenge reactive oxygen species, which drives pH-dependent exo-enzymatic mechanisms and promotes CO2 efflux

Author:

Jofré-Fernández Ignacio,Matus-Baeza Francisco,Merino-Guzmán Carolina

Abstract

Soil organic matter (SOM) decomposition mechanisms in rainforest ecosystems are governed by biotic and abiotic procedures which depend on available oxygen in the soil. White-rot fungi (WRF) play an important role in the primary decomposition of SOM via enzymatic mechanisms (biotic mechanism), which are linked to abiotic oxidative reactions (e.g., Fenton reaction), where both processes are dependent on reactive oxygen species (ROS) and soil pH variation, which has yet been studied. In humid temperate forest soils, we hypothesize that soil pH is a determining factor that regulates the production and consumption of ROS during biotic and abiotic SOM decomposition. Three soils from different parent materials and WRF inoculum were considered for this study: granitic (Nahuelbuta, Schizophyllum commune), metamorphic (Alerce Costero, Stereum hirsutum), and volcanic-allophanic (Puyehue, Galerina patagonica). CO2 fluxes, lignin peroxidase, manganese peroxidase, and dye-decolorizing peroxidase levels were all determined. Likewise, the production of superoxide anion (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH) were assessed in soils microcosms after 36 days of anaerobic incubation with WRF inoculum and induced Fenton reaction under pH variations ranging from 2.5 to 5.1. ROS significantly increased biotic and abiotic CO2 emissions in all tested soils, according to the findings. The highest values (217.45 mg C kg−1) were found during the anaerobic incubation of sterilized and inoculated soils with WRF at a natural pH of 4.5. At pH 4.0, the lowest levels of C mineralization (82 mg C kg−1) were found in Nahuelbuta soil. Enzyme activities showed different trends as pH changed. The Fenton reaction consumed more H2O2 between pH 3 and 4, but less between pH 4.5 and 2.5. The mechanisms that oxidized SOM are extremely sensitive to variations in soil pH and the stability of oxidant radical and non-radical compounds, according to our findings.

Funder

Universidad de La Frontera

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3