Author:
Cai Yifei,Zheng Liangjun,Lu Yao,Zhao Xu,Sun Yanting,Tang Xingyuan,Xiao Jinhe,Wang Chen,Tong Chao,Zhao Lili,Xiao Yingping,Zhao Xin,Xue Huping
Abstract
Most isolated strains of Staphylococcus sciuri contain mecA1, the evolutionary origin of mecA, but are sensitive to β-lactams (OS-MRSS, oxacillin-susceptible mecA1-positive S. sciuri). In order to improve the efficacy of antibiotic treatment, it is important to clarify whether the resistance of OS-MRSS to β-lactams is an inducible phenotype. In this study, three OS-MRSS strains with oxacillin MIC = 1 μg/ml were isolated from 29 retail pork samples. The resistance of OS-MRSS to β-lactams (MIC > 256 μg/ml) was found to be induced by oxacillin, and the induced resistance was observed to remain stable within a certain period of time. Interestingly, the induced β-lactam resistance was not caused by mecA1, heterogeneous resistance, or any genetic mutation, but mainly due to increased wall teichoic acid (WTA) synthesis that thickened the cell wall. The induced strains also showed slower growth rate, as well as decreased adhesion ability and biofilm thickness. These phenotypes were found to be achieved through altered gene expression in associated pathways, such as the citrate cycle and pentose phosphate pathway. The results challenge the traditional antibiotic sensitivity test. In the presence of β-lactam antibiotics, OS-MRSS that was initially sensitive to β-lactams was observed to gradually develop β-lactam resistance in several days. This often-neglected phenomenon in antibiotic sensitivity tests requires further research attention.
Funder
Natural Science Basic Research Program of Shaanxi Province
Foundation for Innovative Research Groups of the National Natural Science Foundation of China
Subject
Microbiology (medical),Microbiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献