Spatial differentiation and influencing factors of effective phosphorus in cultivated soil in the water source area of the mid-route of South-to-North water transfer project

Author:

Wu Zhengxiang,Zhou Yang,Wang Miao

Abstract

The long-term application of phosphate fertilizers in agricultural production leads to a large accumulation of phosphorus in the soil. When it exceeds a certain limit, phosphorus will migrate to surrounding water bodies through surface runoff and other mechanisms, potentially causing environmental risks such as eutrophication of water bodies and increasing the risk of water source pollution. This study takes Shiyan City, the water resources area of the mid-route of the South-to-North Diversion Project (MSDP), as the study area. Based on 701 sampling points of topsoil, geostatistics and geodetectors were used to explore the spatial heterogeneity and influencing factors of available phosphorus (AP) in the topsoil of the area. The results show that the effective phosphorus content in the topsoil of the study area ranges from 0.30 to 146.00 mg/kg, with an average value of 14.28 mg/kg, showing strong variability characteristics. Geostatistical analysis shows that among all theoretical models, the exponential model has the best fitting effect, with a lump gold effect of 0.447 and a range of 82,000 m. The soil available phosphorus content shows an increasing trend from the Central Valley lowlands to the surrounding mountainous hills. Among them, elevation is the main controlling factor for the spatial variation of available phosphorus in the topsoil, followed by soil types, planting systems, annual precipitation, and organic matter. The non-linear enhancement or dual-factor enhancement among various environmental factors reveals the diversity and complexity of spatial heterogeneity affecting available phosphorus content in cultivated soil. This study could provide scientific references for maintaining ecological security in the water source area of the MSDP, improving the precise management of AP, and enhancing cultivated land quality.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3