Extracellular enzyme stoichiometry reveals carbon and nitrogen limitations closely linked to bacterial communities in China’s largest saline lake

Author:

Zhang Weizhen,Liu Yongqin,Geng Mengdie,Chen Ruirui,Wang Jiyi,Xue Bin,Xie Ping,Wang Jianjun

Abstract

Saline lakes possess substantial carbon storage and play essential roles in global carbon cycling. Benthic microorganisms mine and decompose sediment organic matter via extracellular enzymes to acquire limiting nutrients and thus meet their element budgets, which ultimately causes variations in sediment carbon storage. However, current knowledge about microbial nutrient limitation and the associated organic carbon changes especially in saline lake remains elusive. Therefore, we took Qinghai Lake, the largest saline lake of China, as an example to identify the patterns and drivers of microbial metabolic limitations quantified by the vector analyses of extracellular enzyme stoichiometry. Benthic microorganisms were dominantly colimited by carbon (C) and nitrogen (N). Such microbial C limitation was aggravated upon the increases in water salinity and sediment total phosphorus, which suggests that sediment C loss would be elevated when the lake water is concentrated (increasing salinity) and phosphorus becomes enriched under climate change and nutrient pollution, respectively. Microbial N limitation was predominantly intensified by water total nitrogen and inhibited by C limitation. Among the microbial drivers of extracellular enzyme investments, bacterial community structure consistently exerted significant effects on the C, N, and P cycles and microbial C and N limitations, while fungi only altered the P cycle through species richness. These findings advance our knowledge of microbial metabolic limitation in saline lakes, which will provide insights towards a better understanding of global sediment C storage dynamics under climate warming and intensified human activity.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3