Ruminal background of predisposed milk urea (MU) concentration in Holsteins

Author:

Honerlagen Hanne,Reyer Henry,Segelke Dierck,Müller Carolin Beatrix Maria,Prahl Marie Christin,Ponsuksili Siriluck,Trakooljul Nares,Reinsch Norbert,Kuhla Björn,Wimmers Klaus

Abstract

Efforts to reduce nitrogen (N) emissions are currently based on the optimization of dietary- N supply at average herd N requirements. The implementation of the considerable individual differences and predispositions in N- use efficiency and N- excretion in breeding programs is hampered by the difficulty of data collection. Cow individual milk urea (MU) concentration has been proposed as an easy-to-measure surrogate trait, but recent studies questioned its predictive power. Therefore, a deeper understanding of the biological mechanisms underlying predisposed higher (HMUg) or lower (LMUg) MU concentration in dairy cows is needed. Considering the complex N- metabolism in ruminants, the distinction between HMUg and LMUg could be based on differences in (i) the rumen microbial community, (ii) the host-specific transcription processes in the rumen villi, and (iii) the host–microbe interaction in the rumen. Therefore, rumen fluid and rumen epithelial samples from 10 HMUg and 10 LMUg cows were analyzed by 16S sequencing and HiSeq sequencing. In addition, the effect of dietary-N reduction on ruminal shifts was investigated in a second step. In total, 10 differentially abundant genera (DAG) were identified between HMUg and LMUg cows, elucidating greater abundances of ureolytic Succinivibrionaceae_UCG-002 and Ruminococcaceae_unclassified in LMUg animals and enhanced occurrences of Butyvibrio in HMUg cows. Differential expression analysis revealed genes of the bovine Major Histocompatibility Complex (BOLA genes) as well as MX1, ISG15, and PRSS2 displaying candidates of MU predisposition that further attributed to enhanced immune system activities in LMUg cows. A number of significant correlations between microbial genera and host transcript abundances were uncovered, including strikingly positive correlations of BOLA-DRA transcripts with Roseburia and Lachnospiraceae family abundances that might constitute particularly prominent microbial–host interplays of MU predisposition. The reduction of feed-N was followed by 18 DAG in HMUg and 19 DAG in LMUg, depicting pronounced interest on Shuttleworthia, which displayed controversial adaption in HMUg and LMUg cows. Lowering feed-N further elicited massive downregulation of immune response and energy metabolism pathways in LMUg. Considering breeding selection strategies, this study attributed information content to MU about predisposed ruminal N-utilization in Holstein–Friesians.

Funder

Bundesministerium für Ernährung und Landwirtschaft

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3