Lactobacillus mucosae exerted different antiviral effects on respiratory syncytial virus infection in mice

Author:

Wang Qianwen,Fang Zhifeng,Li Lingzhi,Wang Hongchao,Zhu Jinlin,Zhang Pinghu,Lee Yuan-kun,Zhao Jianxin,Zhang Hao,Lu Wenwei,Chen Wei

Abstract

Respiratory syncytial virus (RSV) infection is a constant threat to the health of young children, and this is mainly attributed to the lack of effective prevention strategies. This study aimed to determine whether Lactobacillus (L.) mucosae, a potential probiotic, could protect against respiratory viral infection in a mouse model. Naive 3–4-week-old BALB/c mice were orally administered with three L. mucosae strains (2.5 × 108 CFU/mouse) 7 days before RSV infection (105 TCID50/mouse). Results showed that all three strains inhibited RSV replication and reduced the proportions of inflammatory cells, including granulocytes and monocytes in the blood. The L. mucosae M104R01L3 treatment maintained stable weight in mice and increased interferon (IFN)-β and tumor necrosis factor (TNF)-α levels. The L. mucosae DCC1HL5 treatment increased interleukin (IL)-1β and IL-10 levels. Moreover, the M104R01L3 and DCC1HL5 strains increased the proportions of Akkermansia, Alistipes, and Anaeroplasma which contributed to the advantageous modulation of the gut microbiota. Besides, L. mucosae affected the gut levels of short-chain fatty acids (SCFAs) that are important for the antiviral response. L. mucosae 1,025 increased acetate, propionate, and butyrate levels, whereas L. mucosae M104R01L3 increased the level of acetate in the gut. L. mucosae M104R01L3 may protect against viral infection by upregulating the IFN-β levels in the lungs and its antiviral effect may be related to the increase of acetate levels in the gut. In conclusion, the three L. mucosae strains exerted antiviral effects against RSV infection by differentially regulating immune responses and intestinal micro-ecological balance. This study can provide a reference for studying the mechanisms underlying the antiviral effects of L. mucosae.

Funder

National Natural Science Foundation of China

111 Project

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3