Dynamics of phoD- and gcd-Harboring Microbial Communities Across an Age Sequence of Biological Soil Crusts Under Sand-Fixation Plantation

Author:

Zhao Xingxing,Zhang Ying,Cui Zhenbo,Peng Lu,Cao Chengyou

Abstract

Biological soil crusts (BSCs) are important for restoring vegetation and improving soil fertility in arid or semiarid desertified land. However, studies on the contribution of BSC microbes to phosphorus (P) transformation remains limited. The microbial diversity involved in P transformation and its dynamic along BSC development should be examined to further understand the microbial regulatory mechanism of the P-cycling process. This paper investigates the soil properties, P fractions, and potential of P transformation across a chronosequence (0-, 8-, 20-, and 35-year) of the BSC under Caragana microphylla plantation on the moving sand dunes in Horqin Grassland, China. An abundance of phoD and gcd genes was detected, and the diversities and structures of phoD- and gcd-haboring microbial communities were illustrated via high-throughput sequencing. Soil nutrient content, activity of alkaline phosphomonoesterase, potential of organic P (OP) mineralization, and the abundance of phoD and gcd genes all linearly increased along with BSC age. The microbial quantity and species diversity of the phoD community were greater than those of gcd. BSC development increased the availability of inorganic P (IP) fractions, and both NaHCO3-Pi and NaOH-Pi were positively correlated with the abundance of the two genes and the activity of alkaline phosphomonoesterase. The phyla of Actinobacteria, Planctomycetes, and Proteobacteria and the family of Streptomycetaceae were the most dominant taxa in the phoD community, Proteobacteria was the dominant phylum in the gcd community in BSC soils, and Rhizobium and Planctomyces were the most dominant genera. The dominant taxa quantitatively responded to soil property improvement, but the basic compositions and dominant taxa did not change along with BSC development. The structures of phoD and gcd communities were linked to soil properties, and pH available K, and total K tend to be the direct determining factors.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3