Dynamics of the Gut Bacteriome During a Laboratory Adaptation Process of the Mediterranean Fruit Fly, Ceratitis capitata

Author:

Bel Mokhtar Naima,Catalá-Oltra Marta,Stathopoulou Panagiota,Asimakis Elias,Remmal Imane,Remmas Nikolaos,Maurady Amal,Britel Mohammed Reda,García de Oteyza Jaime,Tsiamis George,Dembilio Óscar

Abstract

Laboratory adaptation process used in sterile insect technique (SIT) programs can exert a significant impact on the insect-gut microbiome relationship, which may negatively impact the quality and performance of the fly. In the present study, changes in the gut microbiota that occur through laboratory adaptation of twoCeratitis capitatapopulations were investigated: Vienna 8 genetic sexing strain (GSS), a long-established control line, and a wild population recently introduced to laboratory conditions. The bacterial profiles were studied for both strains using amplicon sequencing of the 16S rRNA V3-V4 hypervariable region in larvae and in the gastrointestinal tract of teneral (1 day) and adults (5 and 15 days) reared under laboratory conditions for 14 generations (F0–F13). Findings demonstrated the development of distinct bacterial communities across the generations with differences in the bacterial composition, suggesting a strong impact of laboratory adaptation on the fly bacteriome. Moreover, different bacterial profiles were observed between wild and Vienna 8 FD-GSS displaying different patterns between the developmental stages. Proteobacteria, mainly members of theEnterobacteriaceaefamily, represented the major component of the bacterial community followed by Firmicutes (mainly in Vienna 8 FD-GSS adults) and Chlamydiae. The distribution of these communities is dynamic across the generations and seems to be strain- and age-specific. In the Vienna 8 FD-GSS population,Providenciaexhibited high relative abundance in the first three generations and decreased significantly later, whileKlebsiellawas relatively stable. In the wild population,Klebsiellawas dominant across most of the generations, indicating that the wild population was more resistant to artificial rearing conditions compared with the Vienna 8 FD-GSS colony. Analysis of the core bacteriome revealed the presence of nine shared taxa between most of the examined medfly samples includingKlebsiella, Providencia, Pantoea, andPseudomonas. In addition, the operational taxonomic unit co-occurrence and mutual exclusion networks of the wild population indicated that most of the interactions were classified as co-presence, while in the Vienna 8 FD-GSS population, the number of mutual exclusions and co-presence interactions was equally distributed. Obtained results provided a thorough study of the dynamics of gut-associated bacteria during the laboratory adaptation of differentCeratitis capitatapopulations, serving as guidance for the design of colonization protocols, improving the effectiveness of artificial rearing and the SIT application.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3