Global transcriptional responses of pneumococcus to human blood components and cerebrospinal fluid

Author:

Pettersen Jens Sivkær,Høg Frida Fabricius,Nielsen Flemming Damgaard,Møller-Jensen Jakob,Jørgensen Mikkel Girke

Abstract

Streptococcus pneumoniae (pneumococcus) is a leading cause of severe invasive infectious diseases such as sepsis and meningitis. Understanding how pneumococcus adapts and survive in the human bloodstream environment and cerebrospinal fluid (CSF) is important for development of future treatment strategies. This study investigates the global transcriptional response of pneumococcus to human blood components and CSF acquired from discarded and anonymized patient samples. Extensive transcriptional changes to human blood components were observed during early stages of interaction. Plasma-specific responses were primarily related to metabolic components and include strong downregulation of fatty acid biosynthesis genes, and upregulation of nucleotide biosynthesis genes. No transcriptional responses specific to the active plasma proteins (e.g., complement proteins) were observed during early stages of interaction as demonstrated by a differential expression analysis between plasma and heat-inactivated plasma. The red blood cell (RBC)-specific response was far more complex, and included activation of the competence system, differential expression of several two-component systems, phosphotransferase systems and transition metal transporter genes. Interestingly, most of the changes observed for CSF were also observed for plasma. One of the few CSF-specific responses, not observed for plasma, was a strong downregulation of the iron acquisition system piuBCDA. Intriguingly, this transcriptomic analysis also uncovers significant differential expression of more than 20 small non-coding RNAs, most of them in response to RBCs, including small RNAs from uncharacterized type I toxin-antitoxin systems. In summary, this transcriptomic study identifies key pneumococcal metabolic pathways and regulatory genes involved with adaptation to human blood and CSF. Future studies should uncover the potential involvement of these factors with virulence in-vivo.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3