Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions

Author:

Moreno-Indias Isabel,Lahti Leo,Nedyalkova Miroslava,Elbere Ilze,Roshchupkin Gennady,Adilovic Muhamed,Aydemir Onder,Bakir-Gungor Burcu,Santa Pau Enrique Carrillo-de,D’Elia Domenica,Desai Mahesh S.,Falquet Laurent,Gundogdu Aycan,Hron Karel,Klammsteiner Thomas,Lopes Marta B.,Marcos-Zambrano Laura Judith,Marques Cláudia,Mason Michael,May Patrick,Pašić Lejla,Pio Gianvito,Pongor Sándor,Promponas Vasilis J.,Przymus Piotr,Saez-Rodriguez Julio,Sampri Alexia,Shigdel Rajesh,Stres Blaz,Suharoschi Ramona,Truu Jaak,Truică Ciprian-Octavian,Vilne Baiba,Vlachakis Dimitrios,Yilmaz Ercument,Zeller Georg,Zomer Aldert L.,Gómez-Cabrero David,Claesson Marcus J.

Abstract

The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 “ML4Microbiome” that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies.

Funder

European Cooperation in Science and Technology

Instituto de Salud Carlos III

Academy of Finland

Bulgarian National Science Fund

H2020 European Research Council

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3