A comparison of microbial composition under three tree ecosystems using the stochastic process and network complexity approaches

Author:

Kang Peng,Pan Yaqing,Yang Pan,Hu Jinpeng,Zhao Tongli,Zhang Yaqi,Ding Xiaodong,Yan Xingfu

Abstract

Soil microbes act as “players” in regulating biogeochemical cycles, whereas environmental heterogeneity drives microbial community assembly patterns and is influenced by stochastic and deterministic ecological processes. Currently, the limited understanding of soil microbial community assembly patterns and interactions under temperate forest stand differences pose a challenge in studying the soil microbial involvement during the succession from coniferous to broad-leaved forests. This study investigated the changes in soil bacterial and fungal community diversity and community structure at the regional scale and identified the pathways influencing soil microbial assembly patterns and their interactions. The results showed that broad-leaved forest cover in temperate forests significantly increased soil pH, and effectively increased soil water content, total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents. Both soil bacterial and fungal alpha diversity indices were correlated with soil physicochemical properties, especially in broad-leaved forest. The bacterial and fungal community composition of coniferous forest was dominated by deterministic process (bacteria: 69.4%; fungi: 88.9%), while the bacterial community composition of broad-leaved forest was dominated by stochastic process (77.8%) and the fungal community composition was dominated by deterministic process (52.8%). Proteobacteria, Acidobacteriota, Actinobacteriota, and Verrucomicrobiota were the dominant phyla of soil bacterial communities in temperate forests. Whereas Ascomycota, Mortierellomycota, Basidiomycota, and Rozellomycota were the dominant phyla of soil fungal communities in temperate forests. Most members of dominant phylum were regulated by soil physical and chemical properties. In addition, the succession from temperate coniferous forest to broad-leaved forest was conducive to maintaining the complex network of soil bacteria and fungi, and the top 20 degree of the major taxa in the network reflected the positive response of microbial interactions to the changes of soil nutrients during forest succession. This study not only shows the mechanism by which species differences in temperate forests of northern China affect soil microbial community assembly processes, but also further emphasizes the importance of the soil microbiome as a key ecosystem factor through co-occurrence network analysis.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3