Combining citizen science and molecular diagnostic methods to investigate the prevalence of Borrelia burgdorferi s.l. and Borrelia miyamotoi in tick pools across Great Britain

Author:

Shan Jinyu,Jia Ying,Hickenbotham Peter,Teulières Louis,Clokie Martha R. J.

Abstract

Lyme disease is the most common tick-borne disease and is caused by a group of bacteria known as Borrelia burgdorferi sensu lato (s.l.) complex. Sharing the same genus as B. burgdorferi, Borrelia miyamotoi is a distinct genotype that causes relapsing fever disease. This emerging tick-borne disease is increasingly becoming a concern in public health. To investigate the prevalence of B. burgdorferi s.l. and B. miyamotoi in ticks first, we developed a PCR (Bmer-qPCR) that targets the phage terminase large subunit (terL) gene carried by B. miyamotoi. A similar approach had been used successfully in developing Ter-qPCR for detecting B. burgdorferi s.l. The terL protein functions as an enzyme in packaging phage DNA. Analytical validation of the Bmer-qPCR confirmed its specificity, efficiency and sensitivity. Second, we designed a citizen science-based approach to detect 838 ticks collected from numerous sites across Great Britain. Finally, we applied Bmer-qPCR and Ter-qPCR to 153 tick pools and revealed that the prevalence of B. burgdorferi s.l. and B. miyamotoi was dependent on their geographical locations, i.e. Scotland showed a higher rate of B. burgdorferi s.l. and lower rate of B. miyamotoi carriage as compared to those of the England data. A pattern of diminishing rate of B. miyamotoi carriage from southern England to northern Scotland was visible. Together, the citizen science-based approach provided an estimation of the carriage rate of B. burgdorferi s.l. and B. miyamotoi in tick pools and a potential spreading pattern of B. miyamotoi from the south to the north of Great Britain. Our findings underscore the power of combining citizen science with the molecular diagnostic method to reveal hidden pattern of pathogen-host-environment interplay. Our approach can provide a powerful tool to elucidate the ecology of tick-borne diseases and may offer guidance for pathogen control initiatives. In an era of limited resources, monitoring pathogens requires both field and laboratory support. Citizen science approaches provide a method to empower the public for sample collection. Coupling citizen science approaches with laboratory diagnostic tests can make real-time monitoring of pathogen distribution and prevalence possible.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3