Baohe pill decoction treats diarrhea induced by high-fat and high-protein diet by regulating lactase-producing bacteria in intestinal mucosa

Author:

Zhou Kang,Yi Xin,Tan Zhoujin,Peng Maijiao,Xiao Nenqun

Abstract

IntroductionThis study aimed to investigate the effects of Baohe pill decoction (BPD) on microbial, lactase activity, and lactase-producing bacteria in the intestinal mucosa of mice with diarrhea induced by high-fat and high-protein diet (HFHPD).MethodsThirty male Kunming (KM) mice were randomly divided into normal (NM), model (MD), and BPD groups. Diarrhea models were manufactured using HFHPD combined with a gavage of vegetable oil. At the end of modeling, the BPD group was given BPD (6.63 g·kg−1d−1) intervention twice daily for 3 d. The NM and MD groups were given equal amounts of sterile water. Subsequently, the intestinal mucosa of the mice was collected, one portion was used for microbial and lactase activity measurement, and the other portion was used for its lactase-producing bacterial characteristics by high-throughput sequencing technology.ResultsOur results showed that microbial and lactase activity of intestinal mucosa decreased significantly following diarrhea in mice (Pmicrobial < 0.05, Plactase < 0.001). After BPD intervention, microbial and lactase activity increased significantly (P < 0.01). The number of operational taxonomic units (OTUs), richness, and diversity index of lactase-producing bacteria increased in the BPD group compared to the MD group (P > 0.05), and the community structure were significant differences (P < 0.01). Compared to other groups, Saccharopolyspora, Rhizobium, Cedecea, and Escherichia were enriched in the BPD group. Notably, the relative abundance of the dominant lactase-producing genus Bifidobacterium decreased after BPD intervention.DiscussionThe mechanism of BPD in relieving diarrhea induced by HFHPD is closely related to the promotion of lactase activity in the intestinal mucosa, which may be achieved by regulating the structure of lactase-producing bacteria.

Funder

Natural Science Foundation of Hunan Province

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3