The spatial distribution and biogeochemical drivers of nitrogen cycle genes in an Antarctic desert

Author:

Pascoal Francisco,Areosa Inês,Torgo Luís,Branco Paula,Baptista Mafalda S.,Lee Charles K.,Cary S. Craig,Magalhães Catarina

Abstract

Antarctic deserts, such as the McMurdo Dry Valleys (MDV), represent extremely cold and dry environments. Consequently, MDV are suitable for studying the environment limits on the cycling of key elements that are necessary for life, like nitrogen. The spatial distribution and biogeochemical drivers of nitrogen-cycling pathways remain elusive in the Antarctic deserts because most studies focus on specific nitrogen-cycling genes and/or organisms. In this study, we analyzed metagenome and relevant environmental data of 32 MDV soils to generate a complete picture of the nitrogen-cycling potential in MDV microbial communities and advance our knowledge of the complexity and distribution of nitrogen biogeochemistry in these harsh environments. We found evidence of nitrogen-cycling genes potentially capable of fully oxidizing and reducing molecular nitrogen, despite the inhospitable conditions of MDV. Strong positive correlations were identified between genes involved in nitrogen cycling. Clear relationships between nitrogen-cycling pathways and environmental parameters also indicate abiotic and biotic variables, like pH, water availability, and biological complexity that collectively impose limits on the distribution of nitrogen-cycling genes. Accordingly, the spatial distribution of nitrogen-cycling genes was more concentrated near the lakes and glaciers. Association rules revealed non-linear correlations between complex combinations of environmental variables and nitrogen-cycling genes. Association rules for the presence of denitrification genes presented a distinct combination of environmental variables from the remaining nitrogen-cycling genes. This study contributes to an integrative picture of the nitrogen-cycling potential in MDV.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference53 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3