Novel Insights Into Cellular Changes in HPV8-E7 Positive Keratinocytes: A Transcriptomic and Proteomic Analysis

Author:

Kirschberg Matthias,Syed Adnan Shahzad,Dönmez Hanife Güler,Heuser Sandra,Wilbrand-Hennes Astrid,Alonso Angel,Hufbauer Martin,Akgül Baki

Abstract

Human papillomavirus type 8 (HPV8) is associated with the development of non-melanoma skin cancer. In the past we already delved into the mechanisms involved in keratinocyte invasion, showing that the viral E7 oncoprotein is a key player that drives invasion of basal keratinocytes controlled by the extracellular protein fibronectin. To unravel further downstream effects in E7 expressing keratinocytes we now aimed at characterizing gene and protein/phosphoprotein alterations to narrow down on key cellular targets of HPV8-E7. We now show that gene expression of GADD34 and GDF15 are strongly activated in the presence of E7 in primary human keratinocytes. Further analyses of fibronectin-associated factors led to the identification of the Src kinase family members Fyn and Lyn being aberrantly activated in the presence of HPV8-E7. Phospho-proteomics further revealed that E7 not only targets cell polarity and cytoskeletal organization, but also deregulates the phosphorylation status of nuclear proteins involved in DNA damage repair and replication. Many of these differentially phosphorylated proteins turned out to be targets of Fyn and Lyn. Taken together, by using unbiased experimental approaches we have now arrived at a deeper understanding on how fibronectin may affect the signaling cascades in HPV8 positive keratinocytes, which may be key for skin tumorigenesis and that may also aid in the development of novel therapeutic approaches for betaHPV-mediated cancers.

Funder

Wilhelm Sander-Stiftung

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3