Identification of Valerate as Carrying Capacity Modulator by Analyzing Lactiplantibacillus plantarum Colonization of Colonic Microbiota in vitro

Author:

Isenring Julia,Stevens Marc J. A.,Jans Christoph,Lacroix Christophe,Geirnaert Annelies

Abstract

Humans ingest many microorganisms, which may colonize and interact with the resident gut microbiota. However, extensive knowledge about host-independent microbe-microbe interactions is lacking. Here, we investigated such colonization process using a derivative of the model probiotic Lactiplantibacillus plantarum WCFS1 into continuously cultivated gut microbiota in the intestinal PolyFermS fermentation model inoculated with five independently immobilized human adult fecal microbiota. L. plantarum successfully colonized and organized itself spatially in the planktonic, that is, the reactor effluent, and sessile, that is, reactor biofilm, fractions of distinct human adult microbiota. The microbiota carrying capacity for L. plantarum was independent of L. plantarum introduction dose and second supplementation. Adult microbiota (n = 3) dominated by Prevotella and Ruminoccocus exhibited a higher carrying capacity than microbiota (n = 2) dominated by Bacteroides with 105 and 103 CFU/ml of L. plantarum, respectively. Cultivation of human adult microbiota over 3 months resulted in decreased carrying capacity and correlated positively with richness and evenness, suggesting enhanced resistance toward colonizers. Our analyses ultimately allowed us to identify the fermentation metabolite valerate as a modulator to increase the carrying capacity in a microbiota-independent manner. In conclusion, by uncoupling microbe-microbe interactions from host factors, we showed that L. plantarum colonizes the in vitro colonic community in a microbiota-dependent manner. We were further able to demonstrate that L. plantarum colonization levels were not susceptible to the introduction parameters dose and repeated administration but to microbiota features. Such knowledge is relevant in gaining a deeper ecological understanding of colonizer-microbiota interactions and developing robust probiotic strategies.

Funder

ETH Zürich Foundation

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3