Digital gene expression profiling of the transcriptional response to Sclerotinia sclerotiorum and its antagonistic bacterium Bacillus amyloliquefaciens in soybean

Author:

Liu Jianfeng,Hu Xianwen,He Hongli,Zhang Xingzheng,Guo Jinhua,Bai Jing,Cheng Yunqing

Abstract

Soybean Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a common disease in soybean, and effective biological control is urgently needed. We have previously confirmed that Bacillus amyloliquefaciens can effectively antagonize S. sclerotiorum in a plate competition experiment and a soybean seedling inoculation experiment. In this study, the mechanisms underlying plant death caused by S. sclerotiorum and soybean resistance to S. sclerotiorum induced by B. amyloliquefaciens were evaluated. The stems of potted soybean seedlings were inoculated with S. sclerotiorum (Gm-Ss), B. amyloliquefaciens (Gm-Ba), and their combination (Gm-Ba-Ss), using scratch treatments as a control, followed by dual RNA sequencing and bioinformatics analyses. Global gene expression levels in the Gm-Ss treatment were much lower than those in the Gm-Ba, Gm-Ba-Ss, and Gm groups, suggesting that S. sclerotiorum strongly inhibited global gene expression in soybean. In a pairwise comparison of Gm-Ss vs. Gm, 19983 differentially expressed genes (DEGs) were identified. Down-regulated DEGs were involved in various KEGG pathways, including ko01110 (biosynthesis of secondary metabolites), ko01100 (metabolic pathways), ko01120 (microbial metabolism in diverse environments), ko00500 (starch and sucrose metabolism), and ko04075 (plant hormone signal transmission), suggesting that S. sclerotiorum inoculation had a serious negative effect on soybean metabolism. In Gm-Ba vs. Gm, 13091 DEGs were identified, and these DEGs were significantly enriched in ko03010 (ribosome) and ko03008 (ribosome biogenesis in eucaryotes). Our results suggest that B. amyloliquefaciens increases the expression of genes encoding the ribosomal subunit, promotes cell wall biogenesis, and induces systemic resistance. S. sclerotiorum strongly inhibited metabolism in soybean, inhibited the synthesis of the cytoskeleton, and induced the up-regulation of programmed death and senescence-related genes via an ethylene signal transduction pathway. These results improve our understanding of S. sclerotiorum-induced plant death and soybean resistance to S. sclerotiorum induced by B. amyloliquefaciens and may contribute to the improvement of strategies to avoid yield losses.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Jilin Province

Natural Science Foundation of Hebei Province

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3