Identification of the antibacterial action mechanism of diterpenoids through transcriptome profiling

Author:

Moon Keumok,Hwang Sungmin,Lee Hyeon-Jeong,Jo Eunhye,Kim Jeong Nam,Cha Jaeho

Abstract

Effective antibacterial substances of Aralia continentalis have anti-biofilm and bactericidal activity to the oral pathogen Streptococcus mutans. In this study, three compounds extracted from A. continentalis were identified as acanthoic acid, continentalic acid, and kaurenoic acid by NMR and were further investigated how these diterpenoids affect the physiology of the S. mutans. When S. mutans was exposed to individual or mixed fraction of diterpenoids, severe growth defects and unique morphology were observed. The proportion of unsaturated fatty acids in the cell membrane was increased compared to that of saturated fatty acids in the presence of diterpenoids. Genome-wide gene expression profiles with RNA-seq were compared to reveal the mode of action of diterpenoids. Streptococcus mutans commonly enhanced the expression of 176 genes in the presence of the individual diterpenoids, whereas the expression of 232 genes was considerably reduced. The diterpenoid treatment modulated the expression of genes or operon(s) involved in cell membrane synthesis, cell division, and carbohydrate metabolism of S. mutans. Collectively, these findings provide novel insights into the antibacterial effect of diterpenoids to control S. mutans infection, which causes human dental caries.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference57 articles.

1. Defining the normal bacterial flora of the oral cavity;Aas;J. Clin. Microbiol.,2005

2. The Streptococcus mutans Cid and Lrg systems modulate virulence traits in response to multiple environmental signals;Ahn;Microbiology,2010

3. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen;Ajdić;Proc. Natl. Acad. Sci.,2002

4. The association between antibiotics usage in early childhood and early childhood caries;Alaki;Pediatr. Dent.,2009

5. HTSeq—a python framework to work with high-throughput sequencing data;Anders;Bioinformatics,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3