Phylogenomic Analysis Substantiates the gyrB Gene as a Powerful Molecular Marker to Efficiently Differentiate the Most Closely Related Genera Myxococcus, Corallococcus, and Pyxidicoccus

Author:

Liu Yang,Pei Tao,Yi Shuoxing,Du Juan,Zhang Xianjiao,Deng Xiaoqin,Yao Qing,Deng Ming-Rong,Zhu Honghui

Abstract

Rapid and accurate strain identification of the most closely related genera Myxococcus, Corallococcus, and Pyxidicoccus can enhance the efficiency of the mining of novel secondary metabolites through dereplication. However, the commonly used 16S rRNA gene sequencing cannot accurately differentiate members of the three genera above, and the whole-genome sequencing is unable to rapidly and inexpensively provide species assignation toward a large number of isolates. To overcome the limitations, the gyrB gene was investigated as a candidate genetic marker for exploring the phylogenetic relationships of bacteria within the three genera and for developing the gyrB-based typing method. Here, the bacterial phylogeny and species affiliations of the three genera were determined based on the phylogenomic reconstruction and the analysis of digital DNA–DNA hybridization values among 90 genomes, further confirming nine novel taxa and assigning over one-third of genomes to defined species. The phylogenetic relationships of these strains based on the gyrB gene sequences were congruent with those based on their genome sequences, allowing the use of the gyrB gene as a molecular marker. The gyrB gene-specific primers for the PCR-amplification and sequencing of bacteria within the three genera were designed and validated for 31 isolates from our group collection. The gyrB-based taxonomic tool proved to be able to differentiate closely related isolates at the species level. Based on the newly proposed 98.6% identity threshold for the 966-bp gyrB gene and the phylogenetic inference, these isolates were assigned into two known species and eight additional putative new species. In summary, this report demonstrated that the gyrB gene is a powerful phylogenetic marker for taxonomy and phylogeny of bacteria within the closely related genera Myxococcus, Corallococcus, and Pyxidicoccus, particularly in the case of hundreds or thousands of isolates in environmental studies.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3