Bioaugmentation With a Consortium of Bacterial Sodium Lauryl Ether Sulfate-Degraders for Remediation of Contaminated Soils

Author:

Rolando Ludovica,Barra Caracciolo Anna,Grenni Paola,Mariani Livia,Rauseo Jasmin,Spataro Francesca,Garbini Gian Luigi,Visca Andrea,Patrolecco Luisa

Abstract

The anionic surfactant sodium lauryl ether sulfate (SLES) is the main component of most commercial foaming agents (FAs) used in the excavation of highway and railway tunnels with Earth pressure balance-tunnel boring machines (EPB-TBMs). Several hundreds of millions of tons of spoil material, consisting of soil mixed with FAs, are produced worldwide, raising the issue of their handling and safe disposal. Reducing waste production and reusing by-products are the primary objectives of the “circular economy,” and in this context, the biodegradation of SLES becomes a key question in reclaiming excavated soils, especially at construction sites where SLES degradation on the spot is not possible because of lack of space for temporary spoil material storage. The aim of the present work was to apply a bacterial consortium (BC) of SLES degraders to spoil material excavated with an EPB-TBM and coming from a real construction site. For this purpose, the BC capability to accelerate SLES degradation was tested. Preliminary BC growth, degradation tests, and ecotoxicological evaluations were performed on a selected FA. Subsequently, a bioaugmentation experiment was conducted; and the microbial abundance, viability, and SLES concentrations in spoil material were evaluated over the experimental time (0.5, 3, 6, 24, 48, and 144 h). Moreover, the corresponding aqueous elutriates were extracted from all the soil samples and analyzed for SLES concentration and ecotoxicological evaluations with the bacterium Aliivibrio fischeri. The preliminary experiments showed the BC capability to grow under 14 different concentrations of the FA. The maximum BC growth rates and degradation efficiency (100%) were achieved with initial SLES concentrations of 125, 250, and 500 mg/L. The subsequent bioaugmentation of the spoil material with BC significantly (sixfold) improved the degradation time of SLES (DT50 1 day) compared with natural attenuation (DT50 6 days). In line with this result, neither SLES residues nor toxicity was recorded in the soil extracts showing the spoil material as a by-product promptly usable. The bioaugmentation with BC can be a very useful for cleaning spoil material produced in underground construction where its temporary storage (for SLES natural biodegradation) is not possible.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3