Mutagenesis and functional analysis of SotB: A multidrug transporter of the major facilitator superfamily from Escherichia coli

Author:

Zhai Guoqing,Zhang Zhengyu,Dong Changjiang

Abstract

Dysfunction of the major facilitator superfamily multidrug (MFS Mdr) transporters can lead to a variety of serious diseases in human. In bacteria, such membrane proteins are often associated with bacterial resistance. However, as one of the MFS Mdr transporters, the physiological function of SotB from Escherichia coli is poorly understood to date. To better understand the function and mechanism of SotB, a systematic study on this MFS Mdr transporter was carried out. In this study, SotB was found to directly efflux L-arabinose in E. coli by overexpressing sotB gene combined with cell based radiotracer uptake assay. Besides, the surface plasmon resonance (SPR) studies, the L-arabinose inhibition assays, together with precise molecular docking analysis, reveal the following: (i) the functional importance of E29 (protonation), H115/N343 (substrate recognition), and W119/S339 (substrate efflux) in the SotB mediated export of L-arabinose, and (ii) for the first time find that D-xylose, an isomer of L-arabinose, likely hinders the binding of L-arabinose with SotB as a competitive inhibitor. Finally, by analyzing the structure of SotB2 (shares 62.8% sequence similarity with SotB) predicted by AlphaFold 2, the different molecular mechanism of substrate recognition between SotB and SotB2 is explained. To our knowledge, this is the first systematic study of MFS Mdr transporter SotB. The structural information, together with the biochemical inspections in this study, provide a valuable framework for further deciphering the functional mechanisms of the physiologically important L-arabinose transporter SotB and its family.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3