Antimicrobial resistance of Salmonella Indiana from retail chickens in China and emergence of an mcr-1-harboring isolate with concurrent resistance to ciprofloxacin, cefotaxime, and colistin

Author:

Hu Yujie,He Yingying,Nguyen Scott V.,Liu Chang,Liu Chang,Gan Xin,Wang Wei,Dong Yinping,Xu Jin,Li Fengqin,Fanning Séamus

Abstract

Salmonella enterica serotype Indiana (S. Indiana) in Chinese poultry meat has aroused widespread concern because of its high prevalence and strong antimicrobial resistance. In consideration of the relationship in our previous study between S. Indiana and co-resistance to ciprofloxacin and cefotaxime (CIP-CTX), which were the first-line drug which were used in Salmonella infection in clinical, the antimicrobial resistance (AMR) of 224 CIP-CTX co-resistant S. Indiana isolated from retail chicken samples in China were investigated, with the aim of characterizing the AMR profiles and related resistance mechanisms to ciprofloxacin and cefotaxime among these CIP-CTX co-resistant S. Indiana isolates, all of which showed multi-drug-resistant (MDR) phenotypes. GyrA (S83F and D87N/G) with ParC (T57S and S80R) were the dominant amino acid substitution types, with oqxA, oqxB, and aac (6′)-Ib-cr identified as common plasmid-mediated quinolone resistance (PMQR)-encoding genes. Five blaCTX-M gene subtypes were identified with blaCTX-M-65 ranking at the top. Equally important, we obtained one isolate CFSA664 harboring the mcr-1 gene was ESBL producer with co-resistance to nine in ten classes of tested drugs inclduing colistin. A single circular chromosome and 3 circular plasmids were found in its genome. Among the 26 AMR genes identified, 24 were located on plasmid pCFSA664-1, including three ESBL genes, while plasmid pCFSA664-3 owning only the mcr-1 gene and sharing the same backbone structure with plasmids from Enterobacteriaceae. No insertion sequences were found near the mcr-1 gene but a relaxase-encoding gene in the flank, which could transfer into E. coli J53 at a relatively high frequency. S. Indiana in this study exhibited highly drug-resistant phenotypes, contributing to the acceleration of the dissemination and emergence of this pathogen among different sources. Surveillance and a One Health strategy are needed to limit the emergence of S. Indiana along the food chain.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3