Seasonal variations affect the ecosystem functioning and microbial assembly processes in plantation forest soils

Author:

Wang Min,Masoudi Abolfazl,Wang Can,Zhao Liqiang,Yang Jia,Yu Zhijun,Liu Jingze

Abstract

While afforestation mitigates climate concerns, the impact of afforestation on ecological assembly processes and multiple soil functions (multifunctionality) in afforested areas remains unclear. The Xiong’an New Area plantation forests (Pinus and Sophora forests) in North China were selected to examine the effects of plantation types across four distinct seasons on soil microbiomes. Three functional categories (nutrient stocks, organic matter decomposition, and microbial functional genes) of multifunctionality and the average (net) multifunctionality were quantified. All these categories are directly related to soil functions. The results showed that net soil multifunctionality as a broad function did not change seasonally, unlike other narrow functional categories. Bacterial communities were deterministically (variable selection and homogenous selection) structured, whereas the stochastic process of dispersal limitation was mainly responsible for the assembly and turnover of fungal and protist communities. In Pinus forests, winter initiates a sudden shift from deterministic to stochastic processes in bacterial community assembly, accompanied by decreased Shannon diversity and heightened nutrient cycling (nutrient stocks and organic matter decomposition). This indicates the potential vulnerability of deterministic assembly to seasonal fluctuations, particularly in environments rich in nutrients. The results predicted that protist community composition was uniquely structured with C-related functional activities relative to bacterial and fungal β-diversity variations, which were mostly explained by seasonal variations. Our study highlighted the importance of the protist phagocytosis process on soil microbial interactions through the predicted impact of protist α-diversity on microbial cooccurrence network parameters. This association might be driven by the high abundance of protist consumers as the main predators of bacterial and fungal lineages in our sampling plots. Our findings reveal that the complexity of microbial co-occurrence interactions was considerably higher in spring, perhaps attributing thermal variability and increased resource availability within spring that foster microbial diversity and network complexity. This study contributes to local ecosystem prospects to model the behavior of soil biota seasonally and their implied effects on soil functioning and microbial assembly processes, which will benefit global-scale afforestation programs by promoting novel, precise, and rational plantation forests for future environmental sustainability and self-sufficiency.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3