Reverse Vaccinology and Immunoinformatic Assisted Designing of a Multi-Epitopes Based Vaccine Against Nosocomial Burkholderia cepacia

Author:

Alsowayeh Noorah,Albutti Aqel,Al-Shouli Samia T.

Abstract

Burkholderia cepacia is a Gram-negative nosocomial pathogen and is considered as a troublesome bacterium due to its resistance to many common antibiotics. There is no licensed vaccine available to prevent the pathogen infections, thus making the condition more alarming and warrant the search for novel therapeutic and prophylactic approaches. In order to identify protective antigens from pathogen proteome, substantial efforts are put forth to prioritized potential vaccine targets and antigens that can be easily evaluated experimentally. In this vaccine design investigation, it was found that B. cepacia completely sequenced proteomes available in NCBI genome database has a total of 28,966 core proteins. Out of total, 25,282 proteins were found redundant while 3,684 were non-redundant. Subcellular localization revealed that 18 proteins were extracellular, 31 were part of the outer membrane, 75 proteins were localized in the periplasm, and 23 were virulent proteins. Five proteins namely flagellar hook protein (FlgE), fimbria biogenesis outer membrane usher protein, Type IV pilus secretin (PilQ), cytochrome c4, flagellar hook basal body complex protein (FliE) were tested for positive for antigenic, non-toxic, and soluble epitopes during predication of B-cell derived T-cell epitopes. A vaccine peptide of 14 epitopes (joined together via GPGPG linkers) and cholera toxin B subunit (CTBS) adjuvant (joined to epitopes peptide via EAAAK linker) was constructed. Binding interaction of the modeled vaccine with MHC-I, MHC-II, and Toll-like receptor 4 (TLR-4) immune receptors was studied using molecular docking studies and further analyzed in molecular dynamics simulations that affirms strong intermolecular binding and stable dynamics. The maximum root mean square deviation (RMSD) score of complexes in the simulation time touches to 2 Å. Additionally, complexes binding free energies were determined that concluded robust interaction energies dominated by van der Waals. The total energy of each complex is < −190 kcal/mol. In summary, the designed vaccine showed promising protective immunity against B. cepacia and needs to be examined in experiments.

Funder

Majmaah University

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3