Synergistic impact of Serendipita indica and Zhihengliuella sp. ISTPL4 on the mitigation of arsenic stress in rice

Author:

Sharma Neha,Yadav Gaurav,Tyagi Jaagriti,Kumar Ajay,Koul Monika,Joshi Naveen Chandra,Hashem Abeer,Abd_Allah Elsayed Fathi,Mishra Arti

Abstract

Arsenic (As) is a highly toxic metal that interferes with plant growth and disrupts various biochemical and molecular processes in plants. In this study, the harmful effects of As on rice were mitigated using combined inoculation of a root endophyte Serendipita indica and an actinobacterium Zhihengliuella sp. ISTPL4. A randomized experiment was conducted, in which rice plants were grown under controlled conditions and As-stressed conditions. The control and treatment groups consisted of untreated and non-stressed plants (C1), treated and non-stressed plants (C2), stressed and untreated plants (T1), and stressed and treated plants (T2). Various phenotypic characteristics such as shoot length (SL), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), shoot dry weight (SDW), and root dry weight (RDW) and biochemical parameters such as chlorophyll content, protein content, and antioxidant enzymatic activities were evaluated. The activity of various antioxidant enzymes was increased in T2 followed by T1 plants. Furthermore, high concentrations of phytohormones such as ethylene (ET), gibberellic acid (GA), and cytokinin (CK) were found at 4.11 μmol mg−1, 2.53 μmol mg−1, and 3.62 μmol mg−1 of FW of plant, respectively. The results of AAS indicated an increased As accumulation in roots of T2 plants (131.5 mg kg−1) than in roots of T1 plants (120 mg kg−1). It showed that there was an increased As accumulation and sequestration in roots of microbial-treated plants (T2) than in uninoculated plants (T1). Our data suggest that this microbial combination can be used to reduce the toxic effects of As in plants by increasing the activity of antioxidant enzymes such as SOD, CAT, PAL, PPO and POD. Furthermore, rice plants can withstand As stress owing to the active synthesis of phytohormones in the presence of microbial combinations.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3