Contrasting effects of organic materials versus their derived biochars on maize growth, soil properties and bacterial community in two type soils

Author:

Yue Xiaosong,Liu Xing,Wang Fei,Shen Changwei,Zhang Ying

Abstract

The objective of this study was to assess the benefit of applying biochar instead of its feedstock in enhancing soil quality. To accomplish this, we investigated the short-term effects of two organic materials and their derived biochars on maize growth, soil properties, and microbial community in fluvo-aquic and red soil with a pot experiment. Five treatments were applied to each soil, namely, the addition of straw, manure, straw-derived biochar, manure-derived biochar, and the control with no addition of any organic materials and biochar. Our results revealed that straw decreased the shoot biomass of maize in both soils, while straw-derived biochar, manure and manure-derived biochar increased it by 51.50, 35.47 and 74.95% in fluvo-aquic soil and by 36.38, 117.57 and 67.05% in red soil compared with the control, respectively. Regarding soil properties, although all treatments increased soil total organic carbon, straw and manure exhibited more pronounced effects on improving permanganate-oxidizable carbon, basal respiration, and enzyme activity compared with their derived biochars. Manure and its biochar had more significant effects on improving soil available phosphorus, whereas straw and its biochar exhibited more ameliorating effects on available potassium. Straw and manure consistently decreased bacterial alpha diversity (Chao1 and Shannon index) and altered bacterial community composition in the two soils by increasing the relative abundances of Proteobacteria, Firmicutes, and Bacteroidota and decreasing those of Actinobacteriota, Chloroflexi, and Acidobacteriota. More specifically, straw had a greater effect on Proteobacteria, whereas manure affected Firmicutes more. While straw-derived biochar had no effect on bacterial diversity and bacterial community composition in both soils, manure-derived biochar increased bacterial diversity in the fluvo-aquic soil and altered bacterial community composition in the red soil by increasing the relative abundances of Proteobacteria and Bacteroidota and decreasing that of Firmicutes. In summary, owing to the input of active organic carbon, straw and manure exhibited more pronounced short-term effects on soil enzyme activity and bacterial community compared with their derived biochar. Furthermore, straw-derived biochar was found to be a better option than straw in promoting maize growth and nutrient resorption, while the choice of manure and its biochar should be determined by the soil type.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3