Diagnostic efficiency of metagenomic next-generation sequencing for suspected spinal tuberculosis in China: A multicenter prospective study

Author:

Li Yuan,Yao Xiao-wei,Tang Liang,Dong Wei-jie,Lan Ting-long,Fan Jun,Liu Feng-sheng,Qin Shi-bing

Abstract

BackgroundThe pathogens of suspected spinal tuberculosis (TB) include TB and non-TB bacteria. A rapid and effective diagnostic method that can detect TB and non-TB pathogens simultaneously remains lacking. Here, we used metagenomic next-generation sequencing (mNGS) to detect the pathogens in patients with suspected spinal TB.MethodsThe enrolled patients with suspected spinal TB were regrouped three times into patients with spinal infection and controls, patients with spinal TB and controls, and patients with non-TB spinal infection and controls. We tested the three groups separately by using mNGS and conventional detection methods.ResultsUltimately, 100 patients were included in this study. Pathogens were detected in 82 patients. Among the 82 patients, 37 had TB and 45 were infected with other bacteria. In patients with spinal infection, the sensitivity of the mNGS assay was higher than that of culture and pathological examination (p < 0.001, p < 0.001). The specificity of the mNGS assay was not statistically different from that of culture and pathological examination (p = 1.000, p = 1.000). In patients with spinal TB, no statistical difference was found between the sensitivity of the mNGS assay and that of Xpert and T-SPOT.TB (p = 1.000, p = 0.430). The sensitivity of the mNGS assay was higher than that of MGIT 960 culture and pathological examination (p < 0.001, p = 0.006). The specificities of the mNGS assay, Xpert, MGIT 960 culture, and pathological examination were all 100%. The specificity of T-SPOT.TB (78.3%) was lower than that of the mNGS assay (100%; p < 0.001). In patients with non-TB spinal infection, the sensitivity of the mNGS assay was higher than that of bacterial culture and pathological examination (p < 0.001, p < 0.001). The specificity of the mNGS assay was not statistically different from that of bacterial culture and pathological examination (p = 1.000, p = 1.000).ConclusionData presented here demonstrated that mNGS can detect TB and non-TB bacteria simultaneously, with high sensitivity, specificity and short detection time. Compared with conventional detection methods, mNGS is a more rapid and effective diagnostic tool for suspected spinal TB.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3