Biological Approaches Integrating Algae and Bacteria for the Degradation of Wastewater Contaminants—A Review

Author:

Mathew Merwin Mammen,Khatana Kanchan,Vats Vaidehi,Dhanker Raunak,Kumar Ram,Dahms Hans-Uwe,Hwang Jiang-Shiou

Abstract

The traditional approach for biodegradation of organic matter in sewage treatment used a consortium of bacterial spp. that produce untreated or partially treated inorganic contaminants resulting in large amounts of poor-quality sludge. The aeration process of activated sludge treatment requires high energy. So, a sustainable technique for sewage treatment that could produce less amount of sludge and less energy demanding is required for various developed and developing countries. This led to research into using microalgae for wastewater treatment as they reduce concentrations of nutrients like inorganic nitrates and phosphates from the sewage water, hence reducing the associated chemical oxygen demand (COD). The presence of microalgae removes nutrient concentration in water resulting in reduction of chemical oxygen demand (COD) and toxic heavy metals like Al, Ni, and Cu. Their growth also offers opportunity to produce biofuels and bioproducts from algal biomass. To optimize use of microalgae, technologies like high-rate algal ponds (HRAPs) have been developed, that typically use 22% of the electricity used in Sequencing Batch Reactors for activated sludge treatment with added economic and environmental benefits like reduced comparative operation cost per cubic meter, mitigate global warming, and eutrophication potentials. The addition of suitable bacterial species may further enhance the treatment potential in the wastewater medium as the inorganic nutrients are assimilated into the algal biomass, while the organic nutrients are utilized by bacteria. Further, the mutual exchange of CO2 and O2 between the algae and the bacteria helps in enhancing the photosynthetic activity of algae and oxidation by bacteria leading to a higher overall nutrient removal efficiency. Even negative interactions between algae and bacteria mediated by various secondary metabolites (phycotoxins) have proven beneficial as it controls the algal bloom in the eutrophic water bodies. Herein, we attempt to review various opportunities and limitations of using a combination of microalgae and bacteria in wastewater treatment method toward cost effective, eco-friendly, and sustainable method of sewage treatment.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3