Species Diversity and Chemotypes of Fusarium Species Associated With Maize Stalk Rot in Yunnan Province of Southwest China

Author:

Xi Kaifei,Shan Liuying,Yang Yini,Zhang Guoqing,Zhang Jun,Guo Wei

Abstract

Maize stalk rot caused by Fusarium species is one of the most important fungal diseases of maize throughout the world. The disease is responsible for considerable yield losses and has also been associated with mycotoxin contamination of the crop. In this study, a survey of maize stalk rot was performed in seven locations of Yunnan Province in China during the cropping season of 2015 and 2016. Based on morphological and molecular characteristics, 204 isolates belonging to 12 Fusarium spp. from symptomatic stalks of maize were identified. Among the isolated strains, 83 were identified as Fusarium meridionale (40.5%), 46 as Fusarium boothii (22.5%), 34 as Fusarium temperatum (16.5%), 12 as Fusarium equiseti (5.9%), 10 as Fusarium asiaticum (4.9%), six as Fusarium proliferatum (3.0%), four as Fusarium verticillioides (2.0%), four as Fusarium incarnatum (2.0%), two as Fusarium avenaceum (1.0%), one as Fusarium cerealis (0.5%), one as Fusarium graminearum (0.5%), and one as Fusarium cortaderiae (0.5%). Fusarium cortaderiae was the first report on the causal agent of maize stalk rot disease in China. These isolates were divided into five chemotypes: nivalenol (NIV), deoxynivalenol (DON), beauvericin (BEA), zearalenone (ZEN), and fumonisin (FUM). Phylogenetic analysis based on partial sequences of the translation elongation factor 1α (TEF1-α) showed a high degree of interspecific polymorphisms among the isolates. Pathogenicity analysis on maize stalks indicated that all the 12 species of Fusarium were able to cause the disease symptoms with different aggressiveness. This study on population, pathogenicity, and toxigenic chemotypes of Fusarium species associated with maize stalk rot in Yunnan Province of southwest China, will help design an effective integrated control strategy for this disease.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Agricultural Science and Technology Innovation Program

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3