Stator Dynamics Depending on Sodium Concentration in Sodium-Driven Bacterial Flagellar Motors
-
Published:2021-11-26
Issue:
Volume:12
Page:
-
ISSN:1664-302X
-
Container-title:Frontiers in Microbiology
-
language:
-
Short-container-title:Front. Microbiol.
Author:
Lin Tsai-Shun,Kojima Seiji,Fukuoka Hajime,Ishijima Akihiko,Homma Michio,Lo Chien-Jung
Abstract
Bacterial flagellar motor (BFM) is a large membrane-spanning molecular rotary machine for swimming motility. Torque is generated by the interaction between the rotor and multiple stator units powered by ion-motive force (IMF). The number of bound stator units is dynamically changed in response to the external load and the IMF. However, the detailed dynamics of stator unit exchange process remains unclear. Here, we directly measured the speed changes of sodium-driven chimeric BFMs under fast perfusion of different sodium concentration conditions using computer-controlled, high-throughput microfluidic devices. We found the sodium-driven chimeric BFMs maintained constant speed over a wide range of sodium concentrations by adjusting stator units in compensation to the sodium-motive force (SMF) changes. The BFM has the maximum number of stator units and is most stable at 5 mM sodium concentration rather than higher sodium concentration. Upon rapid exchange from high to low sodium concentration, the number of functional stator units shows a rapidly excessive reduction and then resurrection that is different from predictions of simple absorption model. This may imply the existence of a metastable hidden state of the stator unit during the sudden loss of sodium ions.
Funder
Ministry of Science and Technology, Taiwan
Ministry of Education, Culture, Sports, Science and Technology
Publisher
Frontiers Media SA
Subject
Microbiology (medical),Microbiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献