Development of a Molecular Serotyping Scheme for Morganella morganii

Author:

Liu Bin,Guo Xi,Wang Jing,Wu Pan,Li Shujie,Feng Lu,Liu Bin,Wang Lei

Abstract

Morganella morganii, which is often regarded as a human commensal organism, can be an opportunistic pathogen, causing a variety of clinical infections with serious morbidity and mortality. An efficient and convenient method for subtyping and identifying M. morganii strains in epidemiological surveillance and control is urgently needed. Serotyping based on bacterial surface polysaccharide antigens (O-antigen or K-antigens) is a standard subtyping method for many gram-negative bacteria. Here, through whole genome sequencing and comparative genomics analysis of 27 strains, we developed a molecular serotyping scheme based on the genetic variation of O-antigen gene clusters (O-AGC) in M. morganii, and 11 distinct O-AGC types were identified. A conventional serotyping scheme was also developed by the production of antisera and agglutination experiments, which was shown to be perfectly consistent with the molecular serotyping scheme, confirming that the variation in M. morganii O-AGC correlated with phenotypic O-antigen diversification. Furthermore, a microsphere-based suspension array (MSA) with high specificity was developed based on the specific genes within each O-AGC type. The sensitivity of MSA was determined to be 0.1 ng of genomic DNA and 103 CFU of pure culture. We further analyzed 104 M. morganii genomes available in GenBank, and an additional six novel O-AGC types were identified, indicating that the extension of this molecular serotyping scheme is convenient. Our work provides an important tool for the detection and epidemiological surveillance of M. morganii, and this method has the potential to be widely utilized, especially for bacterial genera/species without an efficient typing approach.

Funder

National Natural Science Foundation of China

Science Fund for Distinguished Young Scholars of Tianjin

Natural Science Foundation of Tianjin City

National Key Research and Development Program of China

National Mega Project on Major Infectious Disease Prevention

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3