Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro

Author:

Zapata-Cardona María I.,Flórez-Álvarez Lizdany,Zapata-Builes Wildeman,Guerra-Sandoval Ariadna L.,Guerra-Almonacid Carlos M.,Hincapié-García Jaime,Rugeles María T.,Hernandez Juan C.

Abstract

This article evaluated the in vitro antiviral effect of atorvastatin (ATV) against SARS-CoV-2 and identified the interaction affinity between this compound and two SARS-CoV-2 proteins. The antiviral activity of atorvastatin against this virus was evaluated by three different treatment strategies [(i) pre-post treatment, (ii) pre-infection treatment, and (iii) post-infection treatment] using Vero E6 and Caco-2 cells. The interaction of atorvastatin with RdRp (RNA-dependent RNA polymerase) and 3CL protease (3-chymotrypsin-like protease) was evaluated by molecular docking. The CC50s (half-maximal cytotoxic concentrations) obtained for ATV were 50.3 and 64.5 μM in Vero E6 and Caco-2, respectively. This compound showed antiviral activity against SARS-CoV-2 D614G strain in Vero E6 with median effective concentrations (EC50s) of 15.4, 12.1, and 11.1 μM by pre-post, pre-infection, and post-infection treatments, respectively. ATV also inhibited Delta and Mu variants by pre-post treatment (EC50s of 16.8 and 21.1 μM, respectively). In addition, ATV showed an antiviral effect against the D614G strain independent of the cell line (EC50 of 7.4 μM in Caco-2). The interaction of atorvastatin with SARS-CoV-2 RdRp and 3CL protease yielded a binding affinity of −6.7 kcal/mol and −7.5 kcal/mol, respectively. Our study demonstrated the in vitro antiviral activity of atorvastatin against the ancestral SARS-CoV-2 D614G strain and two emerging variants (Delta and Mu), with an independent effect of the cell line. A favorable binding affinity between ATV and viral proteins by bioinformatics methods was found. Due to the extensive clinical experience of atorvastatin use, it could prove valuable in the treatment of COVID-19.

Funder

Universidad de Antioquia

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3