High-quality genome assembly and multi-omics analysis of pigment synthesis pathway in Auricularia cornea

Author:

Ma Xiaoxu,Lu Lixin,Yao Fangjie,Fang Ming,Wang Peng,Meng Jingjing,Shao Kaisheng,Sun Xu,Zhang Youmin

Abstract

Owing to its great market potential for food and health care, white Auricularia cornea, a rare edible fungus, has received increased attention in recent years. This study presents a high-quality genome assembly of A. cornea and multi-omics analysis of its pigment synthesis pathway. Continuous Long Reads libraries, combined with Hi-C-assisted assembly were used to assemble of white A. cornea. Based on this data, we analyzed the transcriptome and metabolome of purple and white strains during the mycelium, primordium, and fruiting body stages. Finally, we obtained the genome of A.cornea assembled from 13 clusters. Comparative and evolutionary analysis suggests that A.cornea is more closely related to Auricularia subglabra than to Auricularia heimuer. The divergence of white/purple A.cornea occurred approximately 40,000 years ago, and there were numerous inversions and translocations between homologous regions of the two genomes. Purple strain synthesized pigment via the shikimate pathway. The pigment in the fruiting body of A. cornea was γ-glutaminyl-3,4-dihydroxy-benzoate. During pigment synthesis, α-D-glucose-1P, citrate, 2-Oxoglutarate, and glutamate were four important intermediate metabolites, whereas polyphenol oxidase and other 20 enzyme genes were the key enzymes. This study sheds light on the genetic blueprint and evolutionary history of the white A.cornea genome, revealing the mechanism of pigment synthesis in A.cornea. It has important theoretical and practical implications for understanding the evolution of basidiomycetes, molecular breeding of white A.cornea, and deciphering the genetic regulations of edible fungi. Additionally, it provides valuable insights for the study of phenotypic traits in other edible fungi.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3