Composition and Functional Diversity of Epiphytic Bacterial and Fungal Communities on Marine Macrophytes in an Intertidal Zone

Author:

Chen Jun,Zang Yu,Yang Zhibo,Qu Tongfei,Sun Tao,Liang Shuo,Zhu Meiling,Wang Ying,Tang Xuexi

Abstract

Marine macrophytes (seagrasses and macroalgae) and their epiphytic microorganisms play an important role in the ecological and biochemical processes of coastal oceans. However, simultaneous comparative studies on the biodiversity and functions of epiphytic bacteria and fungi associated with marine macrophytes have not been conducted. In this study, high-throughput sequencing technology was used to describe the epiphytic bacterial and fungal communities of 11 common macroalgae and 2 seagrasses from an intertidal zone of northern China and compare them with seawater communities. The results showed that Proteobacteria and Bacteroidota were the dominant bacterial phyla in marine macrophytes, whereas Ascomycota, Chytridiomycota, and Basidiomycota were the dominant fungal phyla. The alpha diversity of the bacterial and fungal communities in seagrasses was the highest of all macrophyte samples. This may have been related to their ability to recruit microorganisms from multiple sources. Host phylogeny may influence bacterial community structure, and geographical differences may influence fungal community structure. The FAPROTAX data indicated that C metabolic microbes were enriched in marine macrophytes, while the FUNGuild data indicated that undefined saprotroph, which participated in organic matter degradation, were also enriched in marine macrophytes. These findings provide a theoretical basis regarding the epiphytic microorganisms of macrophytes and may offer new insights to support the improved ecological restoration of seagrass and macroalgae beds.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3