Author:
Li Bin,Liu Xiaoqian,Zhu Dan,Su Heng,Guo Kaiwen,Sun Guangyu,Li Xin,Sun Lei
Abstract
IntroductionPhytoremediation is an effective strategy for saline land restoration. In the Western Songnen Plain, northeast China, soil fungal community recovery for saline phytoremediation has not been well documented among different cropping patterns. In this study, we tested how rotation, mixture, and monoculture cropping patterns impact fungal communities in saline-alkali soils to assess the variability between cropping patterns.MethodsThe fungal communities of the soils of the different cropping types were determined using Illumina Miseq sequencing.ResultsMixture and rotation promoted an increase in operational taxonomic unit (OTU) richness, and OTU richness in the mixture system decreased with increasing soil depth. A principal coordinate analysis (PCoA) showed that cropping patterns and soil depths influenced the structure of fungal communities, which may be due to the impact of soil chemistry. This was reflected by soil total nitrogen (TN) and electrical conductivity (EC) being the key factors driving OTU richness, while soil available potassium (AK) and total phosphorus (TP) were significantly correlated with the relative abundance of fungal dominant genus. The relative abundance of Leptosphaerulina, Alternaria, Myrothecium, Gibberella, and Tetracladium varied significantly between cropping patterns, and Leptosphaerulina was significantly associated with soil chemistry. Soil depth caused significant differences in the relative abundance of Fusarium in rotation and mixture soils, with Fusarium more commonly active at 0–15 cm deep soil. Null-model analysis revealed that the fungal community assembly of the mixture soils in 0–15 cm deep soil was dominated by deterministic processes, unlike the other two cropping patterns. Furthermore, fungal symbiotic networks were more complex in rotation and mixture than in monoculture soils, reflected in more nodes, more module hubs, and connectors. The fungal networks in rotation and mixture soils were more stable than in monoculture soils, and mixture networks were obviously more connected than rotations. FUNGuild showed that the relative proportion of saprotroph in rotation and mixture was significantly higher than that in monocultures. The highest proportion of pathotroph and symbiotroph was exhibited in rotation and mixture soils, respectively.DiscussionOverall, mixture is superior to crop rotation and monocultures in restoring fungal communities of the saline-alkali soils of the Western Songnen Plain, northeast China.
Subject
Microbiology (medical),Microbiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献