Tillage System and Crop Sequence Affect Soil Disease Suppressiveness and Carbon Status in Boreal Climate

Author:

Palojärvi Ansa,Kellock Miriam,Parikka Päivi,Jauhiainen Lauri,Alakukku Laura

Abstract

The soil-borne plant pathogens cause serious yield losses and are difficult to control. In suppressive soils, disease incidence remains low regardless of the presence of the pathogen, the host plant, and favorable environmental conditions. The potential to improve natural soil disease suppressiveness through agricultural management practices would enable sustainable and resilient crop production systems. Our aim was to study the impact of autumn tillage methods and crop sequence on the soil carbon status, fungistasis and yield in boreal climate. The disease suppression was improved by the long-term reduced and no tillage management practices with and without crop rotation. Compared to the conventional plowing, the non-inversion tillage systems were shown to change the vertical distribution of soil carbon fractions and the amount of microbial biomass by concentrating them on the soil surface. Crop sequence and the choice of tillage method had a combined effect on soil organic carbon (SOC) sequestration. The improved general disease suppression had a positive correlation with the labile carbon status and microbial biomass. From the most common Fusarium species, the predominantly saprophytic F. avenaceum was more abundant under non-inversion practice, whereas the opposite was true for the pathogenic ones. Our findings furthermore demonstrated the correlation of the soil fungistasis laboratory assay results and the prevalence of the pathogenic test fungus Fusarium culmorum on the crop cereals in the field. Our results indicate that optimized management strategies have potential to improve microbial related soil fungistasis in boreal climate.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3