Comparative e-waste plastics biodegradation efficacy of monoculture Pseudomonas aeruginosa strain PE10 and bacterial consortium under in situ condition

Author:

Debbarma Prasenjit,Suyal Deep Chandra,Kumar Saurabh,Zaidi M. G. H.,Goel Reeta

Abstract

A significant amount of electronic obsoletes or electronic waste (e-waste) is being generated globally each year; of these, ~20% of obsolete electronic items have plastic components. Current remediation practices for e-waste have several setbacks due to its negative impact on the environment, agro-ecosystem, and human health. Therefore, comparative biodegradation studies of e-waste plastics by monoculture Pseudomonas aeruginosa strain PE10 and bacterial consortium consisting of Achromobacter insolitus strain PE2 (MF943156), Acinetobacter nosocomialis strain PE5 (MF943157), Pseudomonas lalkuanensis PE8 (CP043311), and Stenotrophomonas pavanii strain PE15 (MF943160) were carried out in situ. Biological treatment of e-waste with these candidates in soil ecosystems has been analyzed through diversified analytical techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric-derivative thermogravimetry-differential thermal analysis (TG-DTG-DTA), and scanning electron microscopy (SEM). Both P. aeruginosa strain PE10 and the bacterial consortium have a tremendous ability to accelerate the biodegradation process in the natural environment. However, FTIR analysis implied that the monoculture had better efficacy than the consortium, and it was consistent until the incubation period used for the study. Some polymeric bonds such as ν C=C and δ C-H were completely removed, and ν C=C ring stretching, νasym C–O–C, νsym C–H, etc. were introduced by strain PE10. Furthermore, thermal analysis results validated the structural deterioration of e-waste as the treated samples showed nearly two-fold weight loss (WL; 6.8%) than the untreated control (3.1%) at comparatively lower temperatures. SEM images provided the details of surface disintegrations. Conclusively, individual monoculture P. aeruginosa strain PE10 could be explored for e-waste bio-recycling in agricultural soil ecosystems thereby reducing the cost, time, and management of bioformulation in addition to hazardous pollutant reduction.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3