UV radiation and temperature increase alter the PSII function and defense mechanisms in a bloom-forming cyanobacterium Microcystis aeruginosa

Author:

Yan Fang,Li Mingze,Zang Shasha,Xu Zhiguang,Bao Menglin,Wu Hongyan

Abstract

The aim was to determine the response of a bloom-forming Microcystis aeruginosa to climatic changes. Cultures of M. aeruginosa FACHB 905 were grown at two temperatures (25°C, 30°C) and exposed to high photosynthetically active radiation (PAR: 400–700 nm) alone or combined with UVR (PAR + UVR: 295–700 nm) for specified times. It was found that increased temperature enhanced M. aeruginosa sensitivity to both PAR and PAR + UVR as shown by reduced PSII quantum yields (Fv/Fm) in comparison with that at growth temperature (25°C), the presence of UVR significantly exacerbated the photoinhibition. M. aeruginosa cells grown at high temperature exhibited lower PSII repair rate (Krec) and sustained nonphotochemical quenching (NPQs) induction during the radiation exposure, particularly for PAR + UVR. Although high temperature alone or worked with UVR induced higher SOD and CAT activity and promoted the removal rate of PsbA, it seemed not enough to prevent the damage effect from them showing by the increased value of photoinactivation rate constant (Kpi). In addition, the energetic cost of microcystin synthesis at high temperature probably led to reduced materials and energy available for PsbA turnover, thus may partly account for the lower Krec and the declination of photosynthetic activity in cells following PAR and PAR + UVR exposure. Our findings suggest that increased temperature modulates the sensitivity of M. aeruginosa to UVR by affecting the PSII repair and defense capacity, thus influencing competitiveness and abundance in the future water environment.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3