Transcriptomic analysis of Lacticaseibacillus paracasei Zhang in transition to the viable but non-culturable state by RNA sequencing

Author:

Bao Qiuhua,Ma Xuebo,Bo Xiaoyu,Pang Jing,Dai Lixia,Wang Huiying,Chen Yongfu,Kwok Lai-Yu

Abstract

BackgroundSome bacteria enter the viable but non-culturable (VBNC) state to survive harsh environmental conditions and external stresses. This alters cell physiology and has implications for the food industry as some bacteria, such as lactobacilli, undergo similar changes during food processing.MethodsThis study aimed to investigate the transcriptomic changes of a probiotic strain, Lacticaseibacillus paracasei Zhang (L. paracasei Zhang), upon transition to the VBNC state using high throughput RNA sequencing (RNA-seq).ResultsBacteria were inoculated into the de Man, Rogosa, and Sharpe medium and maintained at low temperature and pH to induce cell transition to the VBNC state. Cells were harvested for analysis at five stages of VBNC induction: 0, 3, 30, and 180 days after induction and 210 days when the cells entered the VBNC state. Our results showed that the expression of 2,617, 2,642, 2,577, 2,829, and 2,840 genes was altered at these five different stages. The function of differentially expressed genes (DEGs, compared to healthy cells collected at day 0) and their encoded pathways were analyzed by the Gene Ontology Consortium and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. A total of 10 DEGs were identified in cells that entered the VBNC state: five continuously upregulated (LCAZH_0621, LCAZH_1986, LCAZH_2038, LCAZH_2040, and LCAZH_2174) and five continuously downregulated (LCAZH_0024, LCAZH_0210, LCAZH_0339, LCAZH_0621, and LCAZH_0754).ConclusionsThis study proposes a molecular model of the VBNC mechanism in L. paracasei Zhang, highlighting that changes in cell metabolism improve substrate utilization efficiency, thereby enhancing bacterial survival under adverse conditions. These data may be useful for improving the survival of probiotics in industrial food processing.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3