Author:
Tang Guangfei,Xia Haoxue,Liang Jingting,Ma Zhonghua,Liu Wende
Abstract
Putrescine, spermidine, and spermine are the most common natural polyamines. Polyamines are ubiquitous organic cations of low molecular weight and have been well characterized for the cell function and development processes of organisms. However, the physiological functions of polyamines remain largely obscure in plant pathogenic fungi. Fusarium graminearum causes Fusarium head blight (FHB) and leads to devastating yield losses and quality reduction by producing various kinds of mycotoxins. Herein, we genetically analyzed the gene function of the polyamine biosynthesis pathway and evaluated the role of the endogenous polyamines in the growth, development, and virulence of F. graminearum. Our results found that deletion of spermidine biosynthesis gene FgSPE3 caused serious growth defects, reduced asexual and sexual reproduction, and increased sensitivity to various stresses. More importantly, ΔFgspe3 exhibited significantly decreased mycotoxin deoxynivalenol (DON) production and weak virulence in host plants. Additionally, the growth and virulence defects of ΔFgspe3 could be rescued by exogenous application of 5 mM spermidine. Furthermore, RNA-seq displayed that FgSpe3 participated in many essential biological pathways including DNA, RNA, and ribosome synthetic process. To our knowledge, these results indicate that spermidine is essential for growth, development, DON production, and virulence in Fusarium species, which provides a potential target to control FHB.
Subject
Microbiology (medical),Microbiology
Reference53 articles.
1. Structural insights into the novel inhibition mechanism of Trypanosoma cruzi spermidine synthase.;Amano;Acta Crystallogr. D Biol. Crystallogr,2015
2. Spermidine or spermine is essential for the aerobic growth of Saccharomyces cerevisiae.;Balasundaram;Proc. Natl. Acad. Sci. U.S.A.,1991
3. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003).;Bashan;Can. J. Microbiol.,2004
4. Polyamine metabolism and cancer: treatments, challenges and opportunities.;Casero;Nat. Rev. Cancer,2018
5. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management.;Chen;Annu. Rev. Phytopathol.,2019
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献